A relay node deployment method for disconnected wireless sensor networks: Applied in indoor environments

نویسندگان

  • Jenn-Hwan Tarng
  • Bing-Wen Chuang
  • Pei-Chen Liu
چکیده

In this paper, a 2-D geometric and adaptive relay node deployment method with polynomial-time complexity is proposed to reduce relay nodes for bridging all disconnected node pairs of a wireless sensor network (WSN). In this method, proper locations for placing relay nodes are discovered on a plane, which gives a much larger degree of freedom to compare with the traditional 1-D search algorithm. In this way, the deployed relay node can bridge as many disconnected node pairs as possible around it. Besides, the method can also adapt to radio environments because that a sophisticated propagation model including large-scale path loss, shadowing, and multipath fading effects is used to estimate link connectivity. Simulation result validates its robustness and efficiency compared with the existing relay node deployment methods. The proposed method significantly reduces the total number of relay nodes compared with the related works in all of the investigated indoor environments. & 2008 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks

Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...

متن کامل

HYREP: A Hybrid Low-Power Protocol for Wireless Sensor Networks

In this paper, a new hybrid routing protocol is presented for low power Wireless Sensor Networks (WSNs). The new system uses an integrated piezoelectric energy harvester to increase the network lifetime. Power dissipation is one of the most important factors affecting lifetime of a WSN. An innovative cluster head selection technique using Cuckoo optimization algorithm has been used in the desig...

متن کامل

Hybrid Key pre-distribution scheme for wireless sensor network based on combinatorial design

Key distribution is an important problem in wireless sensor networks where sensor nodesare randomly scattered in adversarial environments.Due to the random deployment of sensors, a list of keys must be pre-distributed to each sensor node before deployment. To establish a secure communication, two nodes must share common key from their key-rings. Otherwise, they can find a key- path in which ens...

متن کامل

LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring

Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...

متن کامل

Design and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks

Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Network and Computer Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2009